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“Thinking and spoken discourse are the same thing, except that what we call thinking is, precisely,

the inward dialogue carried on by the mind with itself without spoken sound.”

Plato
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Abstract
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Computational Modelling for Coherence in Spoken Discourse

by Rajaswa Patil

This thesis examines the role of audio modality in the coherence of spoken discourse. While

there has been significant progress towards modelling coherence in written discourse, the work

in modelling spoken discourse coherence has been quite limited. Unlike the coherence in text,

coherence in spoken discourse is also dependent on the prosodic and acoustic patterns in the speech

audio. The goal of this thesis is to provide evidence for the same by performing computational

modelling for coherence in spoken discourse. The method followed includes modelling coherence

in spoken discourse with audio-based coherence models and performing experiments with four

coherence-related tasks with spoken discourses: Speaker Change Detection, Artificial Speech

Evaluation, Discourse Topic Change Detection, and Speech Response Proficiency Scoring. In

our experiments, we evaluate machine-generated speech against the speech delivered by expert

human speakers. We also compare the spoken discourses generated by human language learners

of varying language proficiency levels. The results show that incorporating the audio modality

along with the text benefits the coherence models in performing downstream coherence related

tasks with spoken discourses.
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Chapter 1

Introduction

1.1 Motivation

Most of the previous work dealing with coherence modelling has been limited to evaluating

the semantic organization of the discourse content with text-based coherence systems [23], and

there has been limited work on modelling spoken discourse coherence as a task [69]. Unlike the

coherence in text, coherence in spoken discourse is also dependent on the speech perception,

which, in turn dependent on the prosodic and acoustic patterns in speech audio. The few studies

which have tried to work on spoken discourse coherence have done so by transcribing speech and

then applying text-coherence modelling methods on it [71]. Modelling coherence of a spoken

discourse with its text-transcriptions is an inherently lossy and challenging task [59]. On the one

hand, crucial cues of speech such as pauses, tonal variations, speed changes, stress, rhythm and

intensity are lost while transcribing it, and on the other, the transcription is itself a cumbersome

process with involved logistics and errors from automatic speech recognition (ASR) systems

[11]. Various studies in linguistics have highlighted the importance of prosody in providing a

structure to the spoken discourse [46, 6]. By incorporating the audio modality along with the

text-transcription of the speech, we can better model the coherence in spoken discourse.

1.2 Goal

The goal of this thesis is to inspect the role of speech audio in the coherence of spoken discourse.

This thesis does not attempt to introduce another model of coherence dealing with the semantic

organization of the content. Instead, this thesis tries to inspect the role of speech perception in

discourse coherence. Further, the thesis tries to lay down guidelines for any derivative studies

that shall be conducted for modelling coherence in spoken discourse.

1



Chapter 1. Introduction 2

1.3 Approach

Since this is a preliminary work in modelling spoken discourse coherence, the main focus is on

designing a variety of coherence-related tasks with spoken discourses. The tasks are designed in

such a way, which allows us to inspect the wide role that the speech audio plays in discourse

coherence individually as well as along with its text content. We do not focus on developing

new models of discourse coherence, and instead borrow existing suitable state-of-the-art models

from previous work in text-based coherence modelling. We use these models with text-only,

audio-only, and text with audio settings. This allows us to provide independent insights for

semantic organization and perception aspects of discourse coherence.

1.4 Chapter Summary

The goal of this thesis is to inspect the role of speech audio in the coherence of spoken discourse.

This is a preliminary work in modelling spoken discourse coherence, where the main focus is

on designing a variety of coherence-related tasks with spoken discourses, instead of proposing

new models of discourse coherence. This allows us to provide independent insights for semantic

organization and perception aspects of discourse coherence.



Chapter 2

Background

2.1 Chapter Overview

While the surface-level linguistic definitions of discourse coherence have been previously ex-

plored widely by evaluating the semantic organization of discourse content, the perception and

participation aspects of discourse coherence have not yet been studied from a computational

perspective. This chapter reviews previous work in theories and models of discourse coherence,

which serves as a vital starting point for the thesis.

Section 2.2 discusses various theories of discourse coherence from linguistic and non-linguistic

perspectives. Section 2.3 provides references to previous methods of modelling discourse coher-

ence, which is divided into subsections for organizational convenience. Section 2.3.1 discusses

preliminary studies of discourse coherence modelling, Section 2.3.2 discusses deep-learning based

neural-network models of discourse coherence, Section 2.3.3 briefly describes various applications

of modelling discourse coherence and Section 2.3.4 provides background in the form of early

studies done towards understanding spoken discourse coherence. Finally, Section ?? summarizes

the background and describes the motivation for possible research directions.

2.2 Theories of Discourse Coherence

Discourse is defined as a coherent group of written sentences or spoken utterances obtained

from communication between a writer and reader, or a speaker and listener [24, 72]. Hence,

coherence is the most fundamental property of any discourse, whether it be written, or spoken.

Broadly, the existing theories of discourse coherence can be classified into two perspectives:

discourse-as-product and discourse-as-process [72].

3
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The theories of coherence with the discourse-as-product perspective define its coherence with

surface-level linguistic definitions pertaining to the semantic organization of the discourse content,

and the linguistic devices used to connect the ideas in a discourse [72]. The earliest such definition

was presented by Halliday and Hasan (1976), where they defined coherence as the existence

of cohesion and register in the discourse content [19]. Around the same time, van Dijk (1977)

defined coherence to be a semantic property of the discourse at linear and global levels [68].

Where, linear coherence refers to coherence relations between a sequence of consecutive sentences,

while the global coherence characterizes larger spans in the discourse. Mann and Thompson

(1987) introduced the Rhetorical Structure Theory (RST) [62], which models coherence as a

hierarchical structure of functional chunks connected together with rhetorical relations. For a

coherent text, the smaller chunks at the lower levels of the RST structure shall form a united

structure [72]. Further, Danes (1974) and Fries (1983) defined coherence as the degree of the

connectivity of themes in the sentences of a discourse [5, 14], and Widdowson (1978) defined

coherence as the pragmatic relationship between the illocutionary acts used in the discourse [74].

On the other hand, the theories of coherence with the discourse-as-process perspective consider

discourse to be ”a dynamic process of interaction between communicator and audience, during

which language serves as a medium” (Wang and Guo, 2014 ). Here, coherence deals with the

perception and participation aspects of the discourse rather than the discourse content itself [4,

72, 33]. Brown and Yule (1983) defined coherence with a psychological perspective, where the

backward knowledge of the participants of a discourse played a vital role in the interpretation

of its coherence [49]. Hu Zhuanglin (1994) defined discourse coherence from a situational

and cultural context [77]. Further, the dynamic nature of discourse was studied under the

Speech Act Theory [1] and the Conversational Implicature, where coherence was achieved in a

linguistically incoherent phenomenon [72]. Givon (1995) defined discourse coherence to be a

mental phenomenon where it was stated that: ”Coherence is not an internal property of a written

or spoken text, (but) a property of what emerges during speech production and comprehension—the

mentally represented text, and in particular the mental processes that partake in constructing

that mental representation” [15]. While these aspects of coherence might not always be that

significant with written discourses, they are quite significant with spoken discourses, where

speech’s perception and delivery play a very important role.

2.3 Related Work

2.3.1 Coherence Modelling

Early work in modelling discourse coherence focused on extracting features based on the Centering

Theory [16] and the entity transitions in the text [29, 9]. Barzilay and Lapata (2008) introduced
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the entity grid representation of discourse [2], which was based on discourse entities and their

grammatical role transitions. The entity grid model was further improved for coherence-related

tasks by Elsner and Charniak (2011) [10], Feng and Hirst (2012) [12], and Louis and Nenkova

(2012) [37]. Parallely, many works [53, 35, 13] performed coherence-related tasks based on

discourse relations in the text, parsed with theories like the Rhetorical Structure Theory (RST)

[62] and the Lexicalized Tree Adjoining Grammar for discourse (D-LTAG) [73] with the Penn

Discourse Treebank (PDTB) [54] styled annotations. Notably, the features based on the RST-

encodings were found to be useful for modelling coherence in spoken discourse [71] and more

efficient than the PDTB-encodings for modelling text coherence as well [13]. Further, Guinaudeau

and Strube (2013) [18], and Mesgar and Strube (2015) [40] proposed graph representation-based

approaches to model coherence in text.

2.3.2 Neural Coherence Models

Following the advances in deep neural network architectures and distributed semantic represen-

tations, there has been much progress towards developing neural models of discourse coherence

which provide significant performance gains over the traditional feature-based models. The entity

grid representation of discourse got extended with neural architectures. Tien Nguyen and Joty

(2017) [63] proposed the neural entity grid model, which performed convolutions over the entity

grid representations. Further, Joty et al. (2018) [22] lexicalized the neural entity grid model by

attaching the entities to their respective grammatical roles in the entity grid embeddings.

Neural coherence models can be broadly classified into two categories: generative coherence

models and discriminative coherence models. On the one hand, generative coherence models deal

with modelling the conditional probabilities of a sentence being coherent with a given set of

preceding sentences [32, 36]. On the other hand, discriminative coherence models are trained

to classify coherent and incoherent texts. It has been previously shown that modelling local

coherence with discriminative models can be beneficial for capturing both the local and the

global contexts of coherence with good approximation [45, 75]. Similarly, capturing relations

and similarities between sentences at a local level with neural models can be helpful with

coherence-related tasks [31, 39]. Recent work in coherence modelling has focused on building

models in open-domain [32] and cross-domain [75] settings. More recently Lai and Tetreault

(2018) [27] built coherence models and datasets for real-world texts. Some recent work has also

focused on building benchmarks for applying coherence models in the qualitative evaluation of

text-based natural language generation systems [44].
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2.3.3 Applications of Coherence Modelling

Discourse coherence can be used as an auxiliary metric to evaluate the quality of a given discourse.

Previously, discourse coherence has been used to evaluate written discourses for tasks like essay

scoring and readability assessment [42, 3, 39]. Coherence based metrics and objectives have also

been used to evaluate and improve text-based artificial natural language generation systems [29,

50, 25] for tasks like text-summarization [2, 48], machine-translation [56], language modelling [21,

28] and conversation thread reconstruction [22]. Therefore, modelling discourse coherence has

become an essential task in computational linguistics with a variety of downstream applications.

2.3.4 Coherence in Spoken Discourse

Coherence deals with the perception of the discourse rather than the discourse content itself [4,

72, 33]. While the perception of a written discourse is only affected by the semantic organization

of its lexical content, the perception of a spoken discourse is additionally dependent on its

prosodic and acoustic features

2.3.4.1 Prosody and Coherence

[20]. Previous work in linguistics has highlighted the role of prosody in defining the structure for

spoken discourse. Nakajima and Allen (1993) performed experiments with cooperative dialogues

and demonstrated the role of prosodic information in defining the topic structure of a given

spoken discourse [46]. Further, Degand and Simon (2009) introduced prosodic segmentation to

define basic discourse units in speech [6].

Various previous studies have used prosodic attributes to perform coherence-related tasks with

spoken discourse. Nakajima and Allen (1993) analysed the role of intonation and pause durations

in modelling semantic relationships between discourse utterances at topic boundaries [46]. Further,

Tür et al. (2001) used duration and pitch based features to perform the task of topic segmentation,

which is closely related to both the local and global coherence of spoken discourse [65]. Stifelman

(1995) used pitch patterns to perform emphasis detection with automated discourse segmentation

[58]. This was further used to summarize and skim through spoken discourses, a task which is

highly relevant to the comprehensibility and the perception of spoken discourse.

2.3.4.2 Automatic Speech Scoring

Apart from the previously mentioned tasks, automated speech scoring is an another important

application of modelling discourse structure and coherence. Explicitly annotated coherence
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based measures [69, 70] and features extracted from discourse structures in text-transcriptions

of spoken discourses [71] help in improving the performance of the automated speech scoring

systems significantly. Unlike the work done with essay scoring as an auxiliary evaluation task

for coherence modelling, work in speech scoring has been limited to include discourse coherence

related features from the text-transcriptions of spoken discourse along with other features relevant

to speech scoring.

2.4 Chapter Summary and Research Directions

2.4.1 Chapter Summary

Past work has defined coherence from a discourse-as-product and discourse-as-process perspectives.

While a lot of work has been done in coherence modelling for the former, the later has not

been explored computationally before. Modelling discourse coherence has a lot of downstream

applications in computational linguistics. Where, modelling spoken discourse coherence has a

significant application in speech proficiency scoring.

2.4.2 Research Directions

The review of previous works indicates that the perception aspect of discourse coherence is

as important as the semantic organization of discourse content, and the coherence in spoken

discourse is highly dependent on the speech perception. Hence, the following research directions

can be explored in modelling spoken discourse coherence:

• Developing coherence models with the audio modality.

• Building spoken discourse coherence related tasks and their corresponding datasets.

• Inspecting the role of spoken discourse coherence in speech response scoring with respect

to the language proficiency.



Chapter 3

Datasets

3.1 Chapter Overview

Data plays a vital role in modelling discourse coherence. While a stimulus covering a wide range

of coherent and incoherent discourses is required from the training data, building task-specific

datasets from coherent discourses is equally important in order to evaluate and apply the

coherence models. Developing datasets for coherence modelling in spoken discourses is quite

challenging in this regard.

Section 3.2 discusses the prerequisites for a dataset to be ideal for spoken discourse coherence

related tasks. Section 3.3 describes the datasets used in this thesis, and Section 3.4 describes the

use of text-to-speech systems in generating artificial data for our experiments.

3.2 Requirements for the Datasets

A training dataset for modelling discourse coherence should possess a certain amount of structure,

equally covering (or holding a superficial ability to cover) coherent and incoherent discourses.

It is relatively easier to procure text datasets of such varying levels of structure from sources

like Wikipedia, social networks, and other online medium. There is a significant lack of such

structured discourse-rich datasets for speech. Therefore, choosing the correct datasets for training

coherence models of spoken discourse is quite challenging. At the same time, building datasets for

coherence related tasks with spoken discourses should possess both the content and perception

aspects of the discourse.

8
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3.3 Description of the Datasets

3.3.1 IBM Debater Dataset

We perform all our experiments with the debate speech samples from the IBM Debater dataset1

[30]. The dataset consists of recordings of debate speeches delivered by nine expert debaters,

with debate speeches on 200 distinct Wikipedia topics (such as social media, nuclear weapons,

gambling, etc.) as the debate motions. Each motion topic is contested with two debate recordings

from distinct experts, resulting in a total number of 400 unique speech samples. This makes the

dataset rich with a variety of coherent speeches spread across a variety of open-domain topics,

providing a high quality training signal to our coherence models.

3.3.2 L2 Simulated Oral Proficiency Interview (SOPI) Dataset

We use an another dataset of speech responses from non-native English language learners for

one of the evaluation tasks, the details for which are given in Section 5.1.4. The statistics for all

the datasets are mentioned in Table 5.1.

3.4 Synthesized Speech Datasets

We generate new datasets2 for various evaluation tasks (explained in Section 5.1.4) using the

responses from the IBM Debater dataset. For this, we use the text-transcriptions from the

debate speech recordings to synthesize artificial speech responses with a standard text-to-speech

(TTS) system based on the Microsoft Speech API (SAPI5) [41]. We use two distinct TTS voices

across all our experiments: S1 (US-male voice) and S2 (US-female voice).

3.5 Chapter Summary

In this thesis, we use the IBM Debater Datasets to train our coherence models and perform

our experiments. We also use a dataset of non-native English speakers to evaluate our models.

Further, we generate new task-specific data with text-to-speech systems using the Microsoft

Speech API for a variety of evaluation tasks.

1https://www.research.ibm.com/haifa/dept/vst/debating_data.shtml
2The datasets are available here

https://www.research.ibm.com/haifa/dept/vst/debating_data.shtml
https://drive.google.com/drive/folders/1DPBC9RM5_zfNoCc1OKpd7jLl1P7b7_1y?usp=sharing


Chapter 4

Modelling

4.1 Chapter Overview

There has been no previous work done towards modelling coherence in spoken discourses with

the audio modality. This chapter discusses the guidelines for developing coherence models of

spoken discourse and describes our modelling methodology.

Section 4.2 discusses the general guidelines for developing coherence models of spoken discourse.

Section 4.3 describes the text-based models used in this thesis. Section 4.4 describes the

audio-based models used in this thesis, and Section 4.5 summarizes the chapter.

4.2 Coherence Models for Spoken Discourse

A coherence model for spoken discourse should be able to capture both the prosodic (pitch,

intonation and stress) and the acoustic features (fundamental frequency, intensity and duration)

of an audio sample. It is relatively easier to procure text datasets of varying levels of structure

from sources like Wikipedia, social networks, and other online medium. Given the lack of such

structured discourse-rich datasets for speech, the model should generalize beyond closed-domain

settings [32, 75] and perform well on more open and cross-domain settings with limited training

data [21, 44]. This becomes more important with spoken discourse as it has been shown that

the audio modality is more vulnerable to change in data domain and background as compared

to text [76]. Given the above mentioned challenges and pitfalls related to modelling coherence in

spoken discourse, an ideal audio-based coherence model should:

1. learn a discourse coherence signal with a limited number of training samples

10
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2. generalize across speech samples which vary in terms of the acoustic and prosodic features

of the speech audio (Ex: accent, gender, rhythm, age, speed and intonation) and differences

in the background of data like recording quality, sampling frequency, background noise etc.

3. and, similar to the text domain, generalize across speech samples which vary in terms of

the spoken discourse’s topic and content.

4.3 Text-based Discrimination Model

4.3.1 Distributed Word Representations

Recent development in deep-learning based neural network architectures has resulted in a progress

towards distributed semantics. Distributed word representations obtained from such neural-

network models are quite useful for a variety of downstream tasks in computational linguistics.

Such distributed word representations are also more commonly know as word embeddings. In

this work, we use pre-trained Global Vectors for Word Representations (GloVe) embeddings [52]

to encode the text from the sentence into its corresponding text embedding.

4.3.2 Local Discrimination Model

The local discrimination algorithm proposed by Xu et al. (2019) is designed to maximize the

local coherence scores of adjacent pair of sentences and minimize the local coherence scores for

the non-adjacent pair of sentences in a given discourse [75]. Unlike the older discrimination

models which suffer with class-imbalance between the coherent and incoherent permutations of

written discourses, this approach captures local coherence with an effective negative sampling of

the incoherent non-adjacent sentences. The model takes in a pair of sentence representations

as an input, which are further passed through a multi-layered perceptron with a single hidden

layer (Figure 4.1) to obtain a local coherence score. Experiments done by Xu et al. (2019) [75]

show that the global aspects of coherence can be approximated by using the local coherence

scores from their models with techniques like score-averaging across the discourse. Further,

the local discrimination model learns to generalize in open-domain as well as cross-domain

settings (as shown by their sentence-ordering and paragraph-reconstruction experiments with

domain-separated Wikipedia articles), and is agnostic to the modality and background of the

input data. Hence, for all our experiments, we use the local discrimination model proposed by

Xu et al. (2019) [75].



Chapter 4. Modelling 12

embedding s1 
(sentence 1)

{ s1, s2, s1-s2, |s1-s2|, s1*s2 } 

1-layer MLP

Coherence Score

embedding s2
(sentence 2)

Figure 4.1: The local discrimination coherence model.

4.4 Audio-based Discrimination Models

4.4.1 Speech Representation Learning

Learning latent representations from a time-frequency signal of audio data is very important for

a variety of tasks in speech processing. Recent developments in deep-learning based Convolu-

tional Neural Network architectures have enabled researchers to develop state-of-the-art speech

representation learning models. These models take in the raw audio waveforms and spectrograms

as their inputs, and output a latent vector representation.

The audio waveforms are usually passed through filters, filter-banks, and a series of time-frequency

transforms. The resultant data is then used by the models on a power-scale or a log-scale. The

models are trained to reconstruct segments of audio signal given certain parts of the signal

as the context. The latent representations learnt by these models in the process, are rich in

prosodic, lexical and acoustic information from the speech audio, and can be used for a variety

of downstream applications.

4.4.2 Multimodal Local Discrimination Model

To incorporate the audio modality into the coherence model, we encode an audio based sentence

embedding, similar to the sentence embedding obtained from the text modality. We use a
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pre-trained audio language model: wav2vec [55] to encode the audio segment of a sentence into

its corresponding audio embedding as shown in Figure 4.2. Wav2vec is pre-trained with an

unsupervised objective of next time-step prediction task for audio segments. This objective

function aligns significantly with that of the local discrimination coherence model, providing

rich audio representations for our task. Similarly, we use pre-trained GloVe embeddings [52] to

encode the text from the sentence into its corresponding text embedding.

In order to inspect the role of the audio modality in modelling coherence for spoken discourses,

we experiment with three different learning settings (Coh-T, Coh-A and Coh-AT) for the local

discrimination coherence model (Figure 4.2). Similar to all the previous work, with the first

setting, we just use the text modality as the input to the coherence model (Coh-T). In the

second setting, we use only the audio modality as the input to the coherence model, to establish

an audio-only control setting for our experiments (Coh-A). Finally, in the third setting we

obtain a multimodal input representation by fusing the text and audio modalities together

(Coh-AT). In order to get a minimal trainable aggregated fusion of the two modalities, we pass

the audio and the text embeddings through a bi-linear layer as shown in Figure 4.2. Following

Xu et al. (2019)’s approach, we aggregate the coherence scores from both the forward model

(sentence-1, sentence-2) and the backward model (sentence-2, sentence-1) [75].

Coherence model

Coherence Score
(Coh-A)

Audio encoder
(wav2vec)

Audio embedding (a1)
(sentence 1)

Audio embedding (a2)
(sentence 2)

Coherence model

Coherence Score
(Coh-T)

Text encoder
(GloVe)

Text embedding (t1)
(sentence 1)

Text embedding (t2)
(sentence 2)

Coherence model

Coherence Score
(Coh-AT)

Audio + Text
embedding (at1)

(sentence 1)

Audio + Text
embedding (at2)

(sentence 2)

t1 t2a1 a2

Bi-Linear
Layer

Figure 4.2: Model architecture across the three input settings: Coh-T, Coh-A and Coh-AT.

4.5 Chapter Summary

This chapter described the details about the methodology followed in this work to develop

coherence models of spoken discourses.



Chapter 5

Experiments

5.1 Evaluation Tasks

Empirical results from previous work in coherence modelling for text has shown that the

traditional synthetic tasks like sentence ordering do not effectively capture the models’ ability

to perform downstream discourse coherence related tasks with real-world data [27, 44]. An

ideal coherence model should perform well for both spoken discourses delivered by humans and

machine-generated speech. Keeping this in mind, we design four tasks for evaluating coherence

in spoken discourse: Speaker Change Detection (SCD), Artificial Speech Evaluation (ASE),

Discourse Topic Change Detection (TCD) and Speech Response Scoring (SRS). While the first

three tasks focus on artificially generated speech and speech delivered by expert human speakers,

the fourth task focuses on comparing the spoken discourses delivered by non-native language

learners of varying proficiency levels.

5.1.1 Speaker Change Detection

Modelling coherence in a conversational setting is a very important task with various downstream

applications [22, 67]. To obtain a structured conversational text-transcript from a given speech

audio, we first need to perform speaker diarization. Hence, speaker diarization is an important

aspect of modelling conversational spoken discourse [43]. Acoustic cues play an important role

in speaker segmentation of conversational speech [51]. We construct a new dataset for this task

using the speech samples from the IBM Debater dataset [30]. We sample a ten-sentences long

segment from the middle of every response. The first five sentences from the sampled segment

are synthesized with a TTS voice (S1) and the next five sentences are synthesized with another

TTS voice (S2). Consequently, the overall synthesized speech response consists of a speaker

change at the end of the fifth sentence, while maintaining a continuation in the discourse topic.

14
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This speaker change in the response can be detected with an audio-based coherence model,

where the event of speaker change can be depicted with the least inter-sentence local coherence

score. Further in a separate experiment, we reverse the order of speakers, such that the first five

sentences are synthesized with TTS voice S2 and the next five sentences are synthesized with

TTS voice S1.

5.1.2 Artificial Speech Evaluation

Following the work done in evaluating the quality of text-based natural language generation

systems with coherence-based measures [29, 50, 25], we propose evaluating the TTS systems

with coherence models of spoken discourse. TTS systems often face issues while naturalizing

the synthesized speech to make it more human-like and intelligible across longer contexts [61].

Modelling discourse relations and coherence can benefit a TTS system in delivering expressive

and intelligible speech [7]. In this task, we evaluate and compare a TTS speech sample which

lacks a certain amount of prosodic variation in terms of intonation, stress and speaking rate, to

the speech from a expert human speaker. The underlying hypothesis for this particular task is

that the lack of prosodic variation in the TTS sample makes it relatively incoherent as compared

to the human speech, even though the delivered lexical content is same across both the samples.

An ideal audio-based coherence model should assign a lesser coherence score to the TTS response

as compared to its corresponding expert human speech response.

5.1.3 Discourse Topic Change Detection

Following the work done by Tür et al. (2001) [66] in automatic topic segmentation with prosodic

cues, we propose a coherence-based topic change detection task for spoken discourse. For this,

we construct a new dataset using the responses from the IBM Debater dataset [30]. These

samples majorly evaluate the extent to which a model captures the prosodic features at topic

boundaries [46]. For constructing a sample, we select a five-sentences long segment from the

middle of every response, so that the sampled segment represents a developed topic rather than

introductory definitions or concluding statements. Subsequently, we combine it with a similarly

sampled segment from a different motion topic. This results in a new ten-sentences long speech

response which covers a particular topic in its first five sentences and a different topic in the

next five sentences. We use a text-to-speech system to synthesize the speech audio for this

newly generated response. The underlying hypothesis for this particular task is that the local

inter-sentence coherence score should be the lowest for the fifth and the sixth sentence, depicting

a change in discourse topic for the given speech response.
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5.1.4 Speech Response Scoring

Coherence scores follow a monotonic relationship with the holistic language proficiency grades.

Previous work in text-based coherence modelling has used essay scoring as an auxiliary evaluation

task [42, 39]. Conversely, modelling coherence has also proved to be beneficial in essay-scoring

benchmarks [60, 34]. In a like manner, coherence-based features extracted from the text-

transcriptions of spoken discourses have proved to be useful in scoring speech responses from

language learners and non-native English speakers [69, 70]. Following this, we test our coherence

models on a dataset of spoken discourses delivered by non-native English language learners from

Philippines [17]. The dataset comprises of speech responses recorded in a test environment where

the candidates are asked to respond to six distinct prompts. They are subsequently double

scored by expert annotators using a holistic language proficiency level on a 6-point CEFR scale

council2001common. We construct pairs of speech responses, such that every pair contains

speech responses from two different speakers, for the same prompt. Given such a pair of speech

responses, we hypothesize that the response graded with higher holistic proficiency level, should

be assigned higher coherence scores by a coherence model.

Spoken discourse from non-native speakers is usually less structured as compared to a discourse

delivered by a native expert speaker [76], making it more challenging to model discourse coherence

for non-native speakers. The text-transcripts of the speech responses in the dataset are not

structured with proper punctuation, which is needed to obtain sentence-level segments of the

speech response. So, we punctuate the text-transcripts from the dataset with a punctuator

model [64]. Given the background and the pre-processing involved, this dataset is more noisy

and challenging as compared to the IBM Debater dataset. Moreover, while the discourses from

the IBM Debater dataset are more argumentative and informative in nature, the responses in

this dataset are more descriptive and narrative in nature. Hence, both the datasets vastly differ

in terms of discourse modes [57, 8].

Task
Number of speech responses

Train Validation Test

SCD* - - 398

ASE* 197 78 120

TCD* - - 786

SRS 463 181 234

Table 5.1: Statistics: Dataset Samples Distribution
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5.2 Experimental Setup

Audio Processing: Across all our experiments, we use a speaking-rate of 150 words per

minute to synthesize speech responses with the TTS systems, a value which is recognized as

the average speaking rate for a native US-English speaking adult [47]. Unlike structured texts,

there are no explicit cues to perform a sentence-level segmentation in speech. We use a pre-

trained Montreal Forced Aligner (MFA1) model [38] and the punctuation from the structured

text-transcriptions to get the sentence-level alignments for the speech audio files. Further, all the

speech responses are resampled to a 16kHz mono-channel audio file as required by the pre-trained

wav2vec model.

Coherence Modelling: Following Xu et al. (2019)’s [75] training protocol, we sample the

incoherent pair of sentences within the same speech response. This avoids the model pitfalls

related to the topic and speech based features with the local discrimination setting . Further,

to make the model generalize well across various domains and sources of the data, we do not

fine-tune the pre-trained audio and text encoders on the training data. We train the model to

optimize the local coherence scoring based margin loss objective as shown in Equation 5.1, where

f+ and f - are coherence scores for the adjacent (coherent) and non-adjacent (incoherent) pairs

of sentences, respectively. We use 50% of the topics in the dataset to train our model, while

the rest 20% and 30% of the topics are used for validation and testing purposes, respectively.

The model parameters are optimized with Adam optimizer [26] with a learning rate of 0.001.

We validate the models with an early stop callback on the validation loss, with a patience of

two epochs. Given, the cross-domain adaptation abilities of the local discrimination model, we

borrow the hyperparameter settings from Xu et al. (2019) [75] and do not perform any extensive

hyperparameter tuning during our experiments.

L(f+, f -) = max(0, 5− f+ + f -) (5.1)

kchange = mink∈[1,N−1]{f+
k} (5.2)

coherence score =
1

N − 1

N−1∑
k=1

f+
k (5.3)

1https://montreal-forced-aligner.readthedocs.io/

https://montreal-forced-aligner.readthedocs.io/
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While the SCD task and TCD task are evaluated at a local level with inter-sentence coherence

scores (Equation 5.2), the SRS task is evaluated with response-level coherence scores as shown

in Equation 5.3, where N is the number of sentences in the speech response.



Chapter 6

Discussion

6.1 Results

Task SCD: For a ten-sentences long response, task SCD results in a nine-way classification

setting. The top-k (k=1,2,3 ) accuracy scores for the SCD task are shown in Table 6.1. As

expected, the Coh-T model fails to capture the speaker change boundaries (with the accuracy

scores being almost equal to that of random guessing) due to the lack of access to the acoustic

information from the speech audio. The Coh-A model shows impressive accuracy for this task,

consistent across both the orders of speaker-change. The model predicts almost all the speaker

change boundaries for k=3. The Coh-AT model does not match up in performance against the

Coh-A model, suggesting a difference in audio-based learning between the two input settings.

Model Change k=1 k=2 k=3

Coh-T - 0.0944 0.2041 0.3138

Coh-A
S1 → S2 0.9770 0.9898 0.9949
S2 → S1 0.9796 0.9974 1.0000

Coh-AT
S1 → S2 0.7398 0.8954 0.9311
S2 → S1 0.5026 0.6913 0.7730

Table 6.1: Top-k accuracy scores for the SCD task.

Negative sampling within the same speech response restricts the model to look at audio segments

from different speakers under the audio-based settings. Consequently, the model is only exposed

to small prosodic and acoustic variations from the same speaker during training. This shows that

the local discrimination model captures even large acoustic changes in a given conversational

spoken discourse, by modelling local coherence with cues from small acoustic and prosodic

variations in monologue speech.

19
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Speaker Coh-T Coh-A Coh-AT

Human
Expert

f+ 0.75 0.97 0.84
f - -1.14 -1.76 -2.52

% diff -252% -281.40% -400%

TTS voice
(S1)

f+ 0.75 1.76 1.08
f - -1.14 1.62 -0.92

% diff -252% -7.90% -185.20%

TTS voice
(S2)

f+ 0.75 2.73 0.77
f - -1.14 2.55 -1.39

% diff -252% -6.60% -280.50%

Table 6.2: Mean coherence scores of positive (adjacent) and negative (non-adjacent) pairs
of sentences from the speech samples in the test set along with the relative difference (% diff)
between them. A higher % diff value is indicative of better coherence models and more coherent

spoken discourses.

Task ASE: Given the difference in the audio data backgrounds for expert human speakers

and TTS systems, we compare their coherence by monitoring the relative difference between

the mean coherence scores of the coherent (adjacent) and incoherent (non-adjacent) pairs of

sentences sampled from the speech responses generated by them (Table 6.2). In accordance with

the training objective function, the incoherent sentences are scored lesser than the coherent

sentences (negative relative difference) across all the speaker and model settings. A higher

relative difference between the coherence scores of coherent and incoherent pairs of sentences not

only indicates the coherence model’s ability to effectively model coherence (horizontal traversal

across Table 6.2), but it also indicates the speaker’s ability to produce more coherent discourses

(vertical traversal across Table 6.2). While the Coh-T model gives a relative difference of −252%

on the samples from human experts, the audio-based Coh-A and Coh-AT models give much

higher relative differences of −281.40% and −400%, respectively. This shows that incorporating

the audio modality highly benefits a coherence model to capture the difference between coherent

and incoherent samples. Further, while the Coh-T model is independent of any changes in the

speech audio (same mean coherence scores of 0.75 and −1.14 for all the speakers), comparing

the relative differences across the speakers, we observe that the TTS voices S1 and S2 show

significantly lower relative differences across both the audio-based settings (−7.90% and −6.60%

for Coh-A and, −185.20% and −280.50% for Coh-AT, respectively). Hence, under the ASE task,

we find that the speech synthesized by TTS systems is relatively incoherent and more difficult to

perceive as compared to human-generated speech.

Task TCD: Similar to the SCD task, the TCD task comes up with a nine-way classification

setting. The top-k (k=1,2,3 ) accuracy scores for the TCD task are shown in Table 6.3. The

Coh-A model does not perform well on the TCD task individually, with the accuracy scores
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Model Speaker k=1 k=2 k=3

Coh-T - 0.2513 0.3980 0.5434

Coh-A
S1 0.1148 0.2156 0.3444
S2 0.1135 0.2742 0.3801

Coh-AT
S1 0.2385 0.4031 0.5383
S2 0.2449 0.4056 0.5663

Table 6.3: Top-k accuracy scores for the TCD task.

being almost equal to that of random guessing. While the Coh-T model slightly outperforms the

Coh-AT model for k=1, the Coh-AT model shows slight improvements over the Coh-T model for

k=2 with both the TTS voices S1 and S2. Further, for k=3, the Coh-AT model shows significant

improvement over the Coh-T model for TTS voice S2. Even though topic segmentation is

predominantly a text-based task, the slight improvements shown by Coh-AT model over the

text-only settings can be explained by the presence of cues related to the prosodic patterns

observed at topic boundaries 10.5555/898272.

Coh-T Coh-A Coh-AT

Train 0.477 0.5594 0.4216
Valid 0.5278 0.6944 0.5417
Test 0.4641 0.7046 0.5569

Table 6.4: Accuracy scores for the SRS task with non-native speech dataset.

Task SRS: For this task, we monitor the accuracy scores for the binary classification setting

based on the holistic language proficiency grades, using response-level coherence scores as the

proficiency measure (Table 6.4). While the Coh-A model performs significantly well with an

accuracy score of 0.70 on the test set, the Coh-T and Coh-AT models fail to converge. Given

the lack of structure in non-native speech and the noise in the text-transcriptions of the speech-

responses, text-based settings do not capture the complex holistic grades efficiently. On the

other hand, the audio-based setting seems to be resistant to this lack of structure and noise in

transcriptions and it effectively captures the holistic language proficiency grades.



Chapter 7

Conclusion

7.1 Summary

The near-perfect performance of the Coh-A model in predicting the speaker changes suggests

that modelling coherence with the audio modality can turn out to be quite beneficial for a variety

of discourse related tasks in conversational speech such as speech act detection, conversation

disentanglement, etc. To further the efforts made in naturalizing the speech synthesized with

text-to-speech systems, one can come up with better coherence-based objectives to train the TTS

systems. Building up on the topic change detection task, coherence models for spoken discourses

can be also evaluated on related downstream applications like topic-segmentation in spoken

lectures, podcasts, political spoken discourses, etc. Further, the significantly higher performance

of the Coh-A model on the SRS task shows that modelling coherence with audio modality can

highly compensate for the lack of structure and errors in text-transcriptions of the speech. This

can be quite useful while modelling coherence with data from non-native speakers, language

learners or while using error-prone text-transcriptions from automatic speech recognition (ASR)

systems.

In this thesis, we performed experiments with four coherence-related tasks for spoken discourse.

In our experiments, we compare the speech synthesized with text-to-speech systems against the

expert human speakers. We also evaluate coherence in spoken discourses delivered by non-native

language learners of varying language proficiency levels. Our experiments show that incorporating

the audio-modality betters the coherence-modelling for spoken discourses significantly.

22
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7.2 Future Work

While this is a preliminary work done towards modelling coherence in spoken discourse, there

are many future directions that one can follow building up on it. Building real-world datasets

for coherence-related tasks is a significant challenge that one can take on. Further, designing

more interpretable tasks for spoken discourse coherence is a good future research direction as

well. Wit developments in tasks and datasets, we can then further push for developments in

modelling spoken discourse coherence, with applications in various downstream tasks in speech

processing and computational linguistics.
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